Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Nutr ; 43(5): 1073-1078, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579369

RESUMO

BACKGROUND & AIM: In hospitalized patients, daily protein intake remains far below WHO requirements for healthy adults (0.8 g·kg-1·d-1) as well as ESPEN guidelines for patients (1.2-1.5 g·kg-1·d-1). Providing access to a pre-sleep protein dense snack between dinner and going to bed may serve as a great opportunity to increase daily energy and protein intake in hospitalized patients. However, it remains to be assessed whether protein provision prior to sleep effectively increases protein intake, or may reduce food intake throughout the remainder of the day(s). The present study evaluated the impact of giving access to a pre-sleep snack on daily energy and protein intake in patients throughout their hospitalization. METHODS: Patients admitted to the surgical wards of the Maastricht University Medical Centre+ were randomly allocated to usual care (n = 51) or given access to a pre-sleep snack (n = 50). The pre-sleep snack consisted of 103 g cheese cubes (30 g protein) provided between 7:30 and 9:30 PM, prior to sleep. All food provided and all food consumed was weighed and recorded throughout (2-7 days) hospitalization. Daily energy and protein intake and distribution were calculated. Data were analyzed by independent T-Tests with P < 0.05 considered as statistically significant. RESULTS: Daily energy intake was higher in the pre-sleep group (1353 ± 424 kcal d-1) when compared to the usual care group (1190 ± 402 kcal·d-1; P = 0.049). Providing patients access to a pre-sleep snack resulted in a 17% (11 ± 9 g) higher daily protein intake (0.81 ± 0.29 g·kg-1·d-1) when compared to the usual care group (0.69 ± 0.28 g·kg-1·d-1; P = 0.045). Protein intake at breakfast, lunch, and dinner did not differ between the pre-sleep and usual care groups (all P > 0.05). CONCLUSION: Providing access to a pre-sleep protein snack, in the form of protein dense food items such as cheese, represents an effective dietary strategy to increase daily energy and protein intake in hospitalized patients. Patients consuming pre-sleep protein snacks do not compensate by lowering energy or protein intake throughout the remainder of the days. Pre-sleep protein dense food provision should be implemented in hospital food logistics to improve the nutritional intake of patients. TRIAL REGISTER NO: NL8507 (https://trialsearch.who.int/).

2.
Int J Sport Nutr Exerc Metab ; : 1-9, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458181

RESUMO

This case study assessed body composition, muscle strength, cardiorespiratory fitness, and metabolic health of the present female world champion powerlifter in the 70+ age category who started resistance exercise training at 63 years of age with no prior experience with structured exercise training. Measures of body composition (magnetic resonance imaging, computed tomography, and dual-energy X-ray absorptiometry scanning, leg volume); strength (one-repetition maximum leg press and extension, maximum voluntary contraction, and handgrip strength); physical function (short physical performance battery); cardiorespiratory fitness (peak oxygen consumption); and metabolic health (oral glucose tolerance test) were assessed. In addition, a muscle biopsy was collected to assess muscle fiber type distribution and cross-sectional area (CSA). Where possible, data were compared with previously (un)published sex- and age-matched data using z scores. Skeletal muscle mass index was calculated by dividing limb muscle mass by height squared. Data from the control groups are expressed as mean ± 95% confidence interval. Our participant (age: 71 years; body mass: 64.5 kg; body mass index: 27.6 kg/m2) reported a good bone mineral density of 1.09 g/cm2 (T score between -1 and +1) and very low values of abdominal and organ body fat (i.e., between 20% and 70% lower compared with a reference group of postmenopausal women). In addition, she showed a 33% greater skeletal muscle mass index when compared with healthy, older female control subjects (7.9 vs. 5.9 [5.7-6.2] kg/m2; n = 61) as well as 37% greater muscle quadriceps CSA (63.8 vs. 46.6 [44.5-48.7] cm2; n = 48) and 46% greater Type II muscle fiber CSA (4,536 vs. 3,097 [2,707-3,488] µm2; n = 19). Absolute leg press muscle strength was 36% greater (190 vs. 140 [132-147] kg; n = 30) and handgrip strength was 33% greater (33 vs. 25 [23-26] kg; n = 48) when compared with healthy, age-matched controls. In conclusion, even for resistance exercise naïve individuals, starting exercise at an advanced age can lead to improvements in body composition and muscle strength allowing older adults to reduce the risk for developing metabolic syndrome, live independently, and even compete at a world class level.

3.
J Physiol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411283

RESUMO

We measured the impact of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Twelve healthy, male adults (age: 24 ± 3 years, body mass index: 23.7 ± 3.1 kg/m2 ) were subjected to 14 days of strict bed rest with unilateral blood flow restriction performed three times daily in three 5 min cycles (200 mmHg). Participants consumed deuterium oxide and we collected blood and saliva samples throughout 2 weeks of bed rest. Before and immediately after bed rest, lean body mass (dual-energy X-ray absorptiometry scan) and thigh muscle volume (magnetic resonance imaging scan) were assessed in both the blood flow restricted (BFR) and control (CON) leg. Muscle biopsies were collected and unilateral muscle strength (one-repetition maximum; 1RM) was assessed for both legs before and after the bed rest period. Bed rest resulted in 1.8 ± 1.0 kg lean body mass loss (P < 0.001). Thigh muscle volume declined from 7.1 ± 1.1 to 6.7 ± 1.0 L in CON and from 7.0 ± 1.1 to 6.7 ± 1.0 L in BFR (P < 0.001), with no differences between treatments (P = 0.497). In addition, 1RM leg extension strength decreased from 60.2 ± 10.6 to 54.8 ± 10.9 kg in CON and from 59.2 ± 12.1 to 52.9 ± 12.0 kg in BFR (P = 0.014), with no differences between treatments (P = 0.594). Muscle protein synthesis rates during bed rest did not differ between the BFR and CON leg (1.11 ± 0.12 vs. 1.08 ± 0.13%/day, respectively; P = 0.302). Two weeks of bed rest substantially reduces skeletal muscle mass and strength. Blood flow restriction during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. KEY POINTS: Bed rest, often necessary for recovery from illness or injury, leads to the loss of muscle mass and strength. It has been postulated that blood flow restriction may attenuate the loss of muscle mass and strength during bed rest. We investigated the effect of blood flow restriction on muscle protein synthesis rates, muscle mass and strength during 2 weeks of strict bed rest. Blood flow restriction applied during bed rest does not modulate daily muscle protein synthesis rates and does not preserve muscle mass or strength. Blood flow restriction is not effective in preventing muscle atrophy during a prolonged period of bed rest.

4.
Amino Acids ; 56(1): 8, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315260

RESUMO

Plant-derived proteins are generally believed to possess lesser anabolic properties when compared with animal-derived proteins. This is, at least partly, attributed to the lower leucine content of most plant-derived proteins. Corn protein has a leucine content that is highest among most plant-derived proteins and it even exceeds the levels observed in animal-derived proteins such as whey protein. Therefore, this study aimed to compare muscle protein synthesis rates following the ingestion of 30 g corn protein and a 30 g blend of corn plus milk protein with 30 g milk protein. In a randomized, double blind, parallel-group design, 36 healthy young males (26 ± 4 y) received primed continuous L-[ring-13C6]-phenylalanine infusions and ingested 30 g corn protein (CORN), 30 g milk protein (MILK), or a 30 g proteinblend with 15 g corn plus 15 g milk protein (CORN + MILK). Blood and muscle biopsies were collected for 5 h following protein ingestion to assess post-prandial plasma amino acid profiles and myofibrillar protein synthesis rates. The results show that Ingestion of protein increased myofibrillar protein synthesis rates from basal post-absorptive values in all treatments(P < 0.001). Post-prandial myofibrillar protein synthesis rates did not differ between CORN vs MILK (0.053 ± 0.013 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.90), or between CORN + MILK vs MILK (0.052 ± 0.024 vs 0.053 ± 0.013%∙h-1, respectively; t-test P = 0.92). Ingestion of 30 g corn protein, 30 g milk protein, or a blend of 15 g corn plus 15 g milk protein robustly increases muscle protein synthesis rates in young males. The muscle protein synthetic response to the ingestion of 30 g corn-derived protein does not differ from the ingestion of an equivalent amount of milk protein in healthy, young males. Clinical Trial Registry number. NTR6548 (registration date: 27-06-2017) https://www.trialregister.nl/ .


Assuntos
Proteínas do Leite , Proteínas Musculares , Masculino , Proteínas na Dieta/metabolismo , Ingestão de Alimentos , Leucina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Humanos , Adulto Jovem , Adulto
5.
Med Sci Sports Exerc ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994085

RESUMO

PURPOSE: Short periods of limb immobilization lower myofibrillar protein synthesis rates. Within skeletal muscle, the extracellular matrix of connective proteins is recognized as an important factor determining the capacity to transmit contractile force. Little is known regarding the impact of immobilization and subsequent recovery on muscle connective protein synthesis rates. This study examined the impact of one week of leg immobilization and two weeks of subsequent ambulant recovery on daily muscle connective protein synthesis rates. METHODS: Thirty healthy, young (24 ± 5 y) men were subjected to 7 days of one-legged knee immobilization followed by 14 days of ambulant recovery. Deuterium oxide ingestion was applied over the entire period and muscle biopsy samples were collected before immobilization, after immobilization, and after recovery to measure muscle connective protein synthesis rates and mRNA expression of key extracellular matrix proteins (collagen I, collagen III), glycoproteins (fibronectin, tenascin-C), and proteoglycans (fibromodulin, and decorin). A two-way repeated measures (time x leg) ANOVA was used to compare changes in muscle connective protein synthesis rates during immobilization and recovery. RESULTS: During immobilization, muscle connective protein synthesis rates were lower in the immobilized (1.07 ± 0.30 %/d) compared with the non-immobilized (1.48 ± 0.44 %/d; P < 0.01) leg. When compared to the immobilization period, connective protein synthesis rates in the immobilized leg increased during subsequent recovery (1.48 ± 0.64 %/d; P < 0.01). Following recovery, skeletal muscle collagen I, collagen III, fibronectin, fibromodulin, and decorin mRNA expression increased when compared to the post-immobilization timepoint (all P < 0.001). CONCLUSIONS: One week of leg immobilization lowers muscle connective protein synthesis rates. Muscle connective protein synthesis rates increase during subsequent ambulant recovery, which is accompanied by increased mRNA expression of key extracellular matrix proteins.

6.
Bone ; 177: 116921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769955

RESUMO

BACKGROUND: All musculoskeletal tissues are in a constant state of turnover, with a dynamic equilibrium between tissue protein synthesis and breakdown rates. The synthesis of protein allows musculoskeletal tissues to heal following injury. Yet, impaired tissue healing is observed following certain injuries, such as geriatric hip fractures. It is assumed that the regenerative properties of femoral head bone tissue are compromised following an intracapsular hip fracture and therefore hip replacement surgery is normally performed. However, the actual impact on in vivo bone protein synthesis rates has never been determined. DESIGN: In the present study, 10 patients (age: 79 ± 10 y, BMI: 24 ± 4 kg/m2) with an acute (<24 h) intracapsular hip fracture received a primed continuous intravenous infusion of L-[ring-13C6]-phenylalanine before and throughout their hip replacement surgery. Trabecular and cortical bone tissue from both the femoral head and proximal femur were sampled during surgery to assess protein synthesis rates of affected (femoral head) and unaffected (proximal femur) bone tissue, respectively. In addition, tissue samples of gluteus maximus muscle, synovium, ligamentum teres, and femoral head cartilage were collected. Tissue-specific protein synthesis rates were assessed by measuring L-[ring-13C6]-phenylalanine incorporation in tissue protein. RESULTS: Femoral head trabecular bone protein synthesis rates (0.056 [0.024-0.086] %/h) were lower when compared to proximal femur trabecular bone protein synthesis rates (0.081 [0.056-0.118] %/h; P = 0.043). Cortical bone protein synthesis rates did not differ between the femoral head and proximal femur (0.041 [0.021-0.078] and 0.045 [0.028-0.073] %/h, respectively; P > 0.05). Skeletal muscle, synovium, ligamentum teres, and femoral head cartilage protein synthesis rates averaged 0.080 [0.048-0.089], 0.093 [0.051-0.130], 0.121 [0.110-0.167], and 0.023 [0.015-0.039] %/h, respectively. CONCLUSION: In contrast to the general assumption that the femoral head is avital after an intracapsular displaced hip fracture in the elderly, our data show that bone protein synthesis is still ongoing in femoral head bone tissue during the early stages following an intracapsular hip fracture in older patients. Nonetheless, trabecular bone protein synthesis rates are lower in the femoral head when compared to the proximal femur in older patients following an acute intracapsular hip fracture. Trial register no: NL9036.

7.
J Nutr ; 153(6): 1718-1729, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277162

RESUMO

BACKGROUND: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models. OBJECTIVES: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization. METHODS: Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates. RESULTS: Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P < 0.001). Remobilization partially recovered quadriceps CSA (77.3 ± 9.3 and 72.6 ± 10.0 cm2, respectively; P = 0.009), with no differences between the groups (P > 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P < 0.001), with no differences between the groups (P > 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027). CONCLUSION: NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.


Assuntos
Vicia faba , Masculino , Humanos , Animais , Camundongos , Vicia faba/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas do Leite/farmacologia , Proteínas do Leite/metabolismo , Inteligência Artificial , Força Muscular , Imobilização/métodos , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Suplementos Nutricionais , Peptídeos/metabolismo , Músculo Esquelético/metabolismo
8.
J Nutr ; 152(1): 59-67, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34642762

RESUMO

BACKGROUND: The rate of protein digestion and amino acid absorption determines the postprandial rise in circulating amino acids and modulates postprandial muscle protein synthesis rates. OBJECTIVE: We sought to compare protein digestion, amino acid absorption kinetics, and the postprandial muscle protein synthetic response following ingestion of intact milk protein or an equivalent amount of free amino acids. METHODS: Twenty-four healthy, young participants (mean ± SD age: 22 ± 3 y and BMI 23 ± 2 kg/m2; sex: 12 male and 12 female participants) received a primed continuous infusion of l-[ring-2H5]-phenylalanine and l-[ring-3,5-2H2]-tyrosine, after which they ingested either 30 g intrinsically l-[1-13C]-phenylalanine-labeled milk protein or an equivalent amount of free amino acids labeled with l-[1-13C]-phenylalanine. Blood samples and muscle biopsies were obtained to assess protein digestion and amino acid absorption kinetics (secondary outcome), whole-body protein net balance (secondary outcome), and mixed muscle protein synthesis rates (primary outcome) throughout the 6-h postprandial period. RESULTS: Postprandial plasma amino acid concentrations increased after ingestion of intact milk protein and free amino acids (both P < 0.001), with a greater increase following ingestion of the free amino acids than following ingestion of intact milk protein (P-time × treatment < 0.001). Exogenous phenylalanine release into plasma, assessed over the 6-h postprandial period, was greater with free amino acid ingestion (76 ± 9%) than with milk protein treatment (59 ± 10%; P < 0.001). Ingestion of free amino acids and intact milk protein increased mixed muscle protein synthesis rates (P-time < 0.001), with no differences between treatments (from 0.037 ± 0.015%/h to 0.053 ± 0.014%/h and 0.039 ± 0.016%/h to 0.051 ± 0.010%/h, respectively; P-time × treatment = 0.629). CONCLUSIONS: Ingestion of a bolus of free amino acids leads to more rapid amino acid absorption and greater postprandial plasma amino acid availability than ingestion of an equivalent amount of intact milk protein. Ingestion of free amino acids may be preferred over ingestion of intact protein in conditions where protein digestion and amino acid absorption are compromised.


Assuntos
Proteínas Musculares , Período Pós-Prandial , Adulto , Aminoácidos/metabolismo , Proteínas na Dieta , Ingestão de Alimentos , Feminino , Humanos , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto Jovem
9.
Nutrients ; 12(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751788

RESUMO

Micellar casein is characterized as a slowly digestible protein source, and its structure can be modulated by various food processing techniques to modify its functional properties. However, little is known about the impact of such modifications on casein protein digestion and amino acid absorption kinetics and the subsequent post-prandial plasma amino acid responses. In the present study, we determined post-prandial aminoacidemia following ingestion of isonitrogenous amounts of casein protein (40 g) provided as micellar casein (Mi-CAS), calcium caseinate (Ca-CAS), or cross-linked sodium caseinate (XL-CAS). Fifteen healthy, young men (age: 26 ± 4 years, BMI: 23 ± 1 kg·m-2) participated in this randomized cross-over study and ingested 40 g Mi-Cas, Ca-CAS, and XL-CAS protein, with a ~1 week washout between treatments. On each trial day, arterialized blood samples were collected at regular intervals during a 6 h post-prandial period to assess plasma amino acid concentrations using ultra-performance liquid chromatography. Plasma amino acid concentrations were higher following the ingestion of XL-CAS when compared to Mi-CAS and Ca-CAS from t = 15 to 90 min (all p < 0.05). Plasma amino acid concentrations were higher following ingestion of Mi-CAS compared to Ca-CAS from t = 30 to 45 min (both p < 0.05). Plasma total amino acids iAUC were higher following the ingestion of XL-CAS when compared to Ca-CAS (294 ± 63 vs. 260 ± 75 mmol·L-1, p = 0.006), with intermediate values following Mi-CAS ingestion (270 ± 63 mmol·L-1, p > 0.05). In conclusion, cross-linked sodium caseinate is more rapidly digested when compared to micellar casein and calcium caseinate. Protein processing can strongly modulate the post-prandial rise in plasma amino acid bioavailability in vivo in humans.


Assuntos
Aminoácidos/sangue , Caseínas/farmacocinética , Proteínas na Dieta/farmacocinética , Período Pós-Prandial/efeitos dos fármacos , Adulto , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Estudos Cross-Over , Digestão/efeitos dos fármacos , Ingestão de Alimentos , Absorção Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
10.
Nutr Clin Pract ; 35(4): 655-663, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32578906

RESUMO

BACKGROUND: Malnutrition is prevalent in hospitalized patients. To support muscle maintenance in older and chronically ill patients, a protein intake of 1.2-1.5 g/kg/d has been recommended during hospitalization. We assessed daily protein intake levels and distribution in older patients at risk for malnutrition during hospitalization. METHODS: In this prospective, observational study, we measured actual food and food supplement consumption in patients (n = 102; age, 68 ± 14 years; hospital stay, 14 [8-28] days) at risk of malnutrition during hospitalization. Food provided by hospital meals, ONS, and snacks and the actual amount of food (not) consumed were weighed and recorded for all patients. RESULTS: Hospital meals provided 1.03 [0.77-1.26] protein, whereas actual protein consumption was only 0.65 [0.37-0.93] g/kg/d. Protein intake at breakfast, lunch, and dinner was 10 [6-15], 9 [5-14], and 13 [9-18] g, respectively. The use of ONS (n = 62) resulted in greater energy (1.26 [0.40-1.79] MJ/d, 300 [100-430] kcal/d) and protein intake levels (11 [4-16] g/d), without changing the macronutrient composition of the diet. CONCLUSION: Despite protein provision of ∼1.0 g/kg/d, protein intake remains well below these values (∼0.65 g/kg/d), as 30%-40% of the provided food and supplements is not consumed. Provision of ONS may increase energy and protein intake but does not change the macronutrient composition of the diet. Current nutrition strategies to achieve the recommended daily protein intake in older patients during their hospitalization are not as effective as generally assumed.


Assuntos
Dieta/estatística & dados numéricos , Proteínas na Dieta/análise , Suplementos Nutricionais/análise , Hospitalização/estatística & dados numéricos , Desnutrição/etiologia , Idoso , Idoso de 80 Anos ou mais , Peso Corporal , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Avaliação Geriátrica , Humanos , Masculino , Refeições , Pessoa de Meia-Idade , Inquéritos Nutricionais , Estado Nutricional , Estudos Prospectivos , Recomendações Nutricionais , Lanches
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...